61ALECTURE 25 —
DECLARATIVE
PROGRAMMING

Steven Tang and Eric Tzeng
August 6, 2013

8/6/13

I ——
Midterm grades up

- Class did well as a whole!
- glookup -s test2
- Regrades: Talk to your TA in person.

Albert keeps all of his top secret information in a binary tree. This prevents the layperson from reading his
data. However, well trained computer scientists (such as you) can still access his information.
As a further layer of protection, Albert turns some of the nodes in his trees into Eert nodes. Eert nodes,
which have Tree as their base class, are like normal Tree nodes, except they swap their left and right branches.
(Albert settles for nothing less than the most advanced encryption techniques known to man.)

(a) (8 pt) Complete the __init__method for the Eert class on the next page. Make sure to use inheritance
as much as possible. The Eert class should work as follows:

>>> e = Eert("61A account info",
Tree("Username: cs6la-te"),

Tree("Password: imsocool"))

>>> e.entry # unchanged

"61A account info"

>>> e.left.entry # swapped with right

"Password: imsocool"

>>> e.right.entry # swapped with left

"Username: cséla-te"

(b) (5 pt) Complete the definitions of the decrypt methods for both the Tree and Eert classes on the next
page. When the decrypt method is invoked on a binary tree containing Tree and Eert nodes, it returns
a copy of the binary tree, but with all Eert nodes replaced with Tree nodes. During this replacement, you
should also swap the left and the right back to their proper positions! Here is a graphical representation
of the process:

class Tree(object):

def __init__(self, entry, left=None, right=None):
self .entry = entry
self.left = left
self.right = right

def decrypt(self):
"+++ PART B *#+"

class Eert(Tree):

def __init__(self, entry, left=None, right=None):
"xx PART A +4+"

def decrypt(self):
"+++ PART B *#+"

Announcements

- Proj4 has been out

- Due in 7 days — Start if you haven't!

- Recursive art contest deadline one day before project is due

- Future “homework” assignment will be to vote on your favorite submissions
- Final exam next Thursday

= 7-10pm in 1 Pimentel

« Any conflicts — notify us immediately
- Final exam review session this weekend

- See Piazza Poll to vote on your time

- Potential extra credit — more information later in the week

Laziness

Recall our previous sequence interface:
* Asequence has a finite, known length
* Asequence allows element selection for any element

In the cases we've seen so far, satisfying the sequence interface requires
storing the entire sequence in a computer's memory

Problems?
* Infinite sequences - primes, positive integers
* Really large sequences - all Twitter tweets, votes in a presidential election

Streams

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(Rlist):

"""A lazily computed recursive list."""

def init (self, first,
- - compute_rest=lambda: Stream.empty):
assert callable (compute rest)
self.first = first -
self, compute rest = compute_rest
sel. rest = None

@property \L
def rest(self):
"""Return the rest of the stream, computing it if
necessary."""
if self._compute_rest is not None:
self._rest = self._compute_rest()
self._compute_rest = None
return self._rest

“Please don't reference directly”)

8/6/13

I —
Integer Streams

An integer stream is a stream of consecutive integers

An integer stream starting at k consists of k and a function that
returns the integer stream starting at k+1

def integer_stream(first=1):
"""Return a stream of consecutive integers, starting
with first.

>>> s = integer_stream(3)
>>> s.first
3
>>> s.rest.first
4
def compute_rest():
return integer_ stream(first+l)
return Stream(first, compute_rest)

A Stream of Primes

The stream of integers not divisible by any k <=n is:
* The stream of integers not divisible by any k< n,
* Filtered to remove any element divisible by n

* This recurrence is called the Sieve of Eratosthenes

22\5,&7,\8\\}&‘ 11, 13, 13

def primes(istream):
"""Return a stream of primes, given a stream of
consecutive integers."""
def compute_rest():
not_divisible = lambda x: x % istream.first != 0
return primes(filter_stream(not_divisible,
istream.rest))
return Stream(istream.first, compute rest)

I —
Try it

- Write a function add_streams that takes two streams and returns
a new stream formed by summing corresponding elements in the
argument streams. Stop when either of the streams ends.

- Bonus: see if you can use add_streams to define to define the
Fibonacci stream!

Answers

def add_streams(sl, s2):
if s1 is Stream.empty or s2 is Stream.empty:
return Stream.empty
return Stream(sl.first + s2.first,
lambda: add_streams(sl.rest, s2.rest))

fibs = Stream(©,
lambda: Stream(1,
lambda: add_streams(fibs, fibs.rest)))

Sho rt 8. (0 points) Expross yoursolf (v2)
Break

8/6/13

Last “super-big” topic in course

- Lot to cover this lecture...
- We will continue this topic tomorrow as well

- Need to finish questions 1-4 on your Scheme project for Logic
programming to work

« Bring your version of scheme to lab tomorrow!

Databases

A database is a collection of records (tuples) and an interface for adding,
editing, and retrieving records

The Structured Query Language (SQL) is perhaps the most widely used
programming language on Earth

SELECT * FROM toy_info WHERE color='yellow';
[toy_id] toy color | cost |[weight|
2||\whiffleball lyellow [2.20| 0.40

5[frisbee Jyellow/[1.50] 0.20
10/yoyo [yellow[1.50] 0.20)

SQL is an example of a declarative programming language.
It separates what to compute from how it is computed

The language interpreter is free to compute the result in any way it deems
appropriate
htt, com/sql_hands_on,

Declarative Programming
The main characteristics of declarative languages:
* A'"program" is a description of the desired solution

* The interpreter figures out how to generate such a solution

By contrast, in procedural languages such as Python & Scheme:
* A'program" is a description of procedures

* The interpreter carries out execution/evaluation rules
Building a universal problem solver is a difficult task

Declarative programming languages compromise by solving only a subset of
all problems

They typically trade off data scale for problem complexity

The Logic Language
The Logic language is invented for this course

* Based on the Scheme project & ideas from Prolog

Expressions are facts or queries, which contain relations

Expressions and relations are both Scheme lists

For example, (likes Albert dogs) isarelation

Implementation fits on a single sheet of paper

Today’s theme:

19970b-800wi

Simple Facts

A simple fact expression in the Logic language declares a relation to be true
Let's say | want to track my many dogs' ancestry

Language Syntax:

* Arelation is a Scheme list

* Afact expression is a Scheme list containing fact
followed by one or more relations E

v

(fact (parent delano herbert))

v

(fact (parent abraham barack)) F

v

(fact (parent abraham clinton))

v

(fact (parent fillmore abraham))

A D G
> (fact (parent fillmore delano))
> (fact (parent fillmore grover))
> (fact (parent eisenhower fillmore)) B C Herbert

Relations are Not Procedure Calls
In Logic, a relation is not a call expression
® In Scheme, we write (abs -3) tocall abs on -3
® Inlogic, (abs -3 3) asserts that the abs of -3is 3
For example, if we wanted to assertthat1l + 2 = 3:
(add 1 2 3)

Why declare knowledge in this way? It will allow us to solve
problems in two directions:

(add 1 2)
(add _ 2 3)
(add 1 _ 3)
(___123)

Queries

A query contains one or more relations. The Logic interpreter returns whether
(and how) they are all simultaneously satisfied

Queries may contain variables: symbols starting with ?

logic> (fact (parent delano herbert))
logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

logic> (query (parent abraham ?child))
Success!

child: barack

child: clinton

8/6/13

Queries

A query contains one or more relations. The Logic interpreter returns whether
(and how) they are all simultaneously satisfied

Queries may contain variables: symbols starting with ?

logic> (fact (parent delano herbert))
logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

logic> (query (parent ?who barack)
(parent ?who clinton))

Success!

who: abraham

Compound Facts

A fact can include multiple relations and variables as well
(fact <conclusion> <hypothesise> <hypothesisi> ... <hypothesisy>)
Means <conclusion> is true if all <hypothesisk> are true

logic> (fact (child ?c ?p) (parent ?p ?c))

E
logic> (query (child herbert delano))
Success! l
logic> (query (child eisenhower clinton)) F
Failure. ‘,/’//Y\\\\‘
logic> (query (child ?child fillmore))
Success! A D G
B C H

Recursive Facts

A fact is recursive if the same relation is mentioned in a
hypothesis and the conclusion

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))

Success! E
a: delano l
a: fillmore

a: eisenhower F

logic> (query (ancestor ?a barack) ‘/////Y\\\\‘

(ancestor ?a herbert))
Success!

a: fillmore /\ \

a: eisenhower

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of relations for each
query to find a satisfying assignment

logic> (query (ancestor ?a herbert))
Success!
a: delano

a: fillmore <:]

a: eisenhower

logic> (fact (parent delano herbert))

logic> (fact (parent fillmore delano))

logic> (fact (ancestor ?a ?y) (parent ?a ?y))

logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

(parent delano herbert) 5 (1), a simple fact

(ancestor delano herbert) 5 (2), from (1) and the 1st ancestor fact
(parent fillmore delano) 5 (3), a simple fact

(ancestor fillmore herbert) ; (4), from (2), (3), & the 2nd ancestor fact

Hierarchical Facts

Relations can contain relations in addition to atoms

logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color brown)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color brown)))

Variables can refer to atoms or relations

logic> (query (dog (name clinton) (color ?color)))
Success!
color: white

logic> (query (dog (name clinton) ?info))
Success!..
info::(color white)

8/6/13

Example: Combining Multiple Data Sources
Which dogs have an ancestor of the same color?

> (query (dog (name ?name) (color ?color))
(ancestor ?ancestor ?name)
(dog (name ?ancestor) (color ?color)))
Success!
name: barack color: tan ancestor: eisenhower
name: clinton color: white ancestor: abraham

name: grover color: tan ancestor: eisenhower
name: herbert color: brown ancestor: fillmore

Break

8. (0 points) Express yourself (v2)
Express your feelings in the space below through your ive medium, such as poetry or illustration

AT Sasun 2%
¢
)

s s ey SR~
-2 < TRX g e % W

e Wwyiree 15 always bluer in somebod y okies |dice.
TS Aboitt GOING out-fhere , bk Hhit (€ & big musfaice.

Example: Appending Lists
Two lists append to form a third list if:
* The first list is empty and the second and third are the same

() (@abc)(abc)

* Both of the following hold:
* List 1 and 3 have the same first element
* The rest of list 1 and all of list 2 append to form the rest of list 3

(b c) kae) (aJbo c de)

> (fact (append-to-form () ?x ?x))
> (fact (append-to-form (?a . ?r) ?y (?a . ?z))
(append-to-form ?r ?y ?z))

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

. R alr t
* The empty list for an empty list
* The first element of the list inserted into
. rt
an anagram of the rest of the list +
ar
(Element \)Q/Listwith element) rat
(fact (insert ?a ?ri(? r ta
(fact (insert ?a (?b . ?r) (?b . ?s))
(insert ?a ’r ?s)) tr
(fact (anagram () ())) atr
tar

(fact (anagram (?a . ?r) ?b)
(insert ?a ?s ?b) tra
(anagram ?r ?s))

You try it out!

Write facts to make double-elements work

logic> (query (double-elements (3 4) ?result))
Success!

result: (334 4)

logic> (query (double-elements ?start (4 4 5 5)))
Success!

start: (4 5)

